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Abstract This paper presents an approach to visual

odometry that relies on constructing rigid body mod-

els of the static scene and camera. Visual odometry

plays an important role in Simultaneous Localisation

and Mapping (SLAM) where it provides local estimates

of the camera’s trajectory from visual imagery alone. In

this work, the static scene and the camera viewing it are

each represented as a set of orthonormal vectors and a

position vector. The position vector represents the po-

sition of the entity the model is refering to as measured

from some reference. The orthornormal set represents

the entity’s orientation. Scene models are constructed

for each RGB-D image frame in an input sequence.

Since feature matching is an expensive processing oper-

ation, matching is not done on an entire image frame.

Instead the frames are split into a programmable num-
ber of sections, and matching is perfomed on these sec-

tions. Frame splitting helps improve the estimation rate

since the estimation may be completed before the entire

image is scanned and matched. The motion estimation

step of this approach differs from the majority of exist-

ing visual odometry algorithms which involve minimis-

ing the rigid body transformation between frames. In

this approach, motion is estimated by comparing scene

and camera models accross frames and refined using a

moving average technique.
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1 Introduction

Visual odometry is the process of estimating the posi-

tion or motion of a vehicle using only visual imagery.

It is the part of SLAM or specifically Visual SLAM

that is involved with egomotion estimation. A SLAM

system can be thought of as a larger system of which

Visual Odometry is the part that computes local mo-

tion. The goal of the larger SLAM system in general is

obtain a global, consistent estimate of the robot path

(Scaramuzza and Fraundorfer, 2011). One of the earli-

est works on visual odometry was done by Moravec on

the Stanford cart (Huang et al, 2011; Moravec, 1980).

Moravec’s work is used as the basic motion estimation

pipeline even today. Most of the early research in Vi-

sual Odometry was done for planetary rovers to provide

them with the capability to measure 6 degree of freedom

motion in the presence of wheel slippage (Scaramuzza

and Fraundorfer, 2011). The approach presented in this

paper is a sparse visual odometry approach. As such it

is similar to methods (Nister et al, 2004; Konolige et al,

2007; Huang et al, 2011; Engel et al, 2012; Weiss et al,

2012) and follows the basic pipeline: feature detection

followed by feature matching then motion estimation.

The main contribution of this approach is an al-

ternative to minimising the rigid body transformation

or the feature reprojection error between two image

frames. We instead model the scene and camera using

an orthonormal vector set representing rotation and an

another vector representing position. These models are

constructed for each RGB-D frame, and then compared

across frames to calculate camera motion.

The capturing device to be used is an RGB-D cam-

era such as the Microsoft Kinect (Microsoft, 2014). To

test the validity of the algorithm and evaluate it’s per-

fomance, a dataset from the TUM RGB-D Benchmark
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(Sturm et al, 2012; TUM, 2014) was used in test runs

under different configurations.

2 Rigid Body Model

The computer program that implements this approach

maintains model objects for the scene and the camera.

Simply put, each of the model objects is a set of 4 vec-

tors. The first vector in such a model represents the

amount of translation as measured from some coordi-

nate reference. The last 3 vectors are an orthonormal

set, vectors of magnitude 1 which are orthogonal and

represent the rigid body’s orientation.

The 4 vectors in the rigid body model have been

defined as the Origin, the X Axis, the Y Axis and

the Z Axis. The Origin is a position vector representing

the position of the entity the model is referring to. The

X, Y and Z Axes are an orthonormal set of direction

vectors representing rotation.

The scene rigid body model, denoted byG, is shown

in parts below:

G =


GO

GX

GY

GZ

 (1)

Where GO is the scene origin and GX ,GY ,GZ are

the scene x, y and z axes (orthonormal set).

Similarly, the camera rigid body model, denoted by

O, is shown in parts below:

O =


OO

OX

OY

OZ

 (2)

The approach works by capturing frames in an RGB-

D sequence M0,M1,M2...MN−1,MN and then process-

ing them 2 at a time. The previous and latest frames

captured (MN−1 and MN respectively) are the ones

currently processed. The scene and camera model con-

ventions are either appended the subscript N − 1 or

N to denote a model in the previous or latest frames

respectively. We therefore have for the previous frame:

GN−1 =


GON−1

GXN−1

GY N−1

GZN−1

 (3)

ON−1 =


OON−1

OXN−1

OY N−1

OZN−1

 (4)

And for the latest frame:

GN =


GON

GXN

GY N

GZN

 (5)

ON =


OON

OXN

OY N

OZN

 (6)

The model can be visualised in 3D as a group of

coordinate axes and a point as shown in Figure 1.

This setup is sufficient to fully represent the position

and orientation of any rigid body in a 3D coordinate

space. For zero translation,GO is a null vector. For zero

rotation,GX ,GY , andGZ point in the same directions

as the x, y and z axes of the coordinate reference.

Both the camera and the static scene are rigid bod-

ies and are therefore represented in the same way. The

difference is that values in the camera model are as

measured from the world coordinate reference, which

may be given to the system using an external input de-

vice or initialised to the camera’s current position and

orientation. The values in the scene model, on the other

hand are as measured from the camera’s coordinate ref-

erence.

3 Feature Detection and Matching

Suppose we have a sequence of RGB-D frames captured

with an RGB-D camera. Each frame contains two 640

x 480 matrices of pixel data, one for colour and one

for depth. These frames are processed two at a time,

comparing the most recently captured frame with the

previous one at each processing step. In Figure 2, the

frames labeledN−1 and N are the two frames currently

being processed. The previous frame and current frame

respectively.

First, each frame is split into a given number of

sections TS. TS must be an integer value such that it is

possible to split the 640 x 480 pixel grid almost evenly

about the rows and columns. Each of these sections

becomes a candidate for use in creating the scene model.

A random section is selected and searched for features

using a SURF (Bay et al, 2006) feature detector. The

depth maps in the frames will contain some pixels with

no depth values. The feature detector is instructed to

avoid these zones in the colour images by passing it a

mask image matrix with zero values at the pixels that

should not be searched.
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Fig. 1 An illustration of the rigid body model in 3D. G0 is the origin and [GX ,GY ,GZ ] is the orthonormal set. G has been
used here as an example but same model is used to represent the both the scene (G) and the camera (O).

Fig. 2 An RGB-D sequence. Each frame contains a colour image and a depth map. Frames are processed 2 at a time. The
currently processed frames are denoted MN−1 and MN (previous and latest frame respectively). After each iteration, a new
previous frame is read from the sequence and the latest one is dropped.

Fig. 3 The previous and latest frames split into TS = 8 sections. 3 of these sections that contain a minimum of FS matched
features of sufficient quality, will be used to construct the scene model. If less than 3 sections meet the requirements then the
system fails to compute egomotion.

Note that detected features have image pixel coor-

dinates. This does not imply however, that their coordi-

nates will be whole numbers. A feature can exist close

to the intersection of many pixels hence their coordi-

nate values are floating point numbers.

We define a variable FS, the number of features

to be used per scene section to construct the scene

model. The number of features detected in the ran-

domly selected section must be at least FS. If a suf-

ficient amount of features are detected, feature match-

ing is performed on these image sections between the

previous and current frames. The matching operation

results in a list of matches, each containing the pixel co-

ordinates of a feature in the previous and latest frames.
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Fig. 4 Ensuring sufficient separation of scene sections. a,
b and c are in image coordinates and must be sufficiently
distant from each other so as to not be considered a single
point or line. One of the 2 distance inequalities must be met
and the area inequality must also be met.

Every match also carries a score representing its

quality. The score is a floating point number called

the match distance. The lower the match distance the

higher the quality of the match therefore we set a min-

imum value MQ for it.

We need to find a total of FS matches with match

distances less than MQ in a section for it to qualify as

one of the scene sections a, b and c used to construct

the scene model. If we only find less than FS matches

of match distance less than MQ, we discard the section

and move on to the next random section. If we find at

least FS matches of match distance less than MQ, the

section is labeled scene section a.

The next steps are to search for b and then c and

are done in the same way as a but with some addi-
tional constraints. To ensure sufficient spacing between

the 3 scene sections, we set minimum values of pixel

separation SU and SV in the horizontal and vertical

directions respectively for the centers of scene sections

a and b, and a minimum area MA of the resulting tri-

angle abc. This concept is illustrated in Figure 4

The constraints applied can be summerised as fol-

lows:

Constraint 1: An ab pair will be accepted if their

horizontal separation is not less than SU or their ver-

tical separation is not less than SV . This means that if

any of the two distance inequalities shown in Figure 4

are met, an ab pair will be accepted.

Constraint 2: An abc triad will be accepted if ab

satisfies constraint 1 and the area of the triangle abc is

not less than MA.

To reduce the complexity of tuning the overall sys-

tem with configuration parameters, the value of MA is

calculated at runtime using equation 7.

MA =
1

2
· SU · SV (7)

This is essentially the area of a right triangle with

side lengths SU and SV . The values of SU and SV are

supplied to the program as configuration parameters.

Constraints 1 and 2 are applied to candidate sec-

tions. The points checked against the constraints are in

image coordinates. Any points in the scene that are sep-

arated in image coordinates will be proportionally sep-

arated in 3D world coordinates. This is because each

pixel in the image represents a single light ray that

made it onto the camera’s sensing plane. Each light ray

entering the camera comes from a scene point with 3D

coordinates distinct from any other scene point whose

light ray also entered the camera. We should therefore

expect to get sufficient spacing between the world co-

ordinates of a, b and c as well.

4 Creating the Scene Model

To construct the scene model, 3 sufficiently separated

sections with at least FS matched features each must

have been found in the previous and latest frame. We

calculate the center pixel coordinates of each of the

3 sections by averaging the pixel coordinates of the

matches within them.

A depth value is then attached to each of the sec-

tions by averaging the depth values of pixel positions in

the neighbourhood of the matched features. If any one

of the three sections has missing depth by any chance,

it is discarded and the system searches the frame for

other sections.

Once all three sections have a depth value, their

3D coordinates can be calculated from the following

equations.

Z = depth (8)

X =
u− cx
fx

· Z (9)

Y =
u− cy
fy

· Z (10)

Where [X,Y, Z] are the 3D coordinates, [u, v] are

the image coordinates of the scene section, [cx, cy] is the

location of the camera’s optical center in image coordi-

nates and [fx, fy] are the focal lengths of the camera.

The resulting 3D points form a virtual triangle en-

coded with information about the scene’s position and

orientation as measured from the camera. After 3D co-

ordinates of scene sections a, b and c have been cal-

culated. The next step is to compute the scene model.
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Fig. 5 Pixel positions of 3 scene sections with their centers. The center pixel positions are calculated by averaging the pixel
positions of the matched features within each section.

Fig. 6 Depth is calculated from neighbour image patches. Note that not the entire section is used to calculate depth, only
the neighbourhood of the matched features within the section.

The scene model G is constructed from a, b and c as

follows:

The origin GO is the point a.

The x axis GX is the unit vector in the direction

ab.

The z axis GZ is the unit vector in the direction of

the cross product of ab and ac.

The y axis GY is the cross product of the x and z

axes.

This concept is illustrated in Figure 7.

As the camera moves, it views the scene model at

different positions and orientations so it appears to the

camera as though the scene model is moving. Comput-

ing this apparent motion will ultimately lead to com-

puting the camera’s motion.

5 Creating the Camera Model

Assuming we already have the odometry estimates for

the previous frame MN−1. The translation of the cam-

era in the previous frame is represented by the 3D

vector sN−1 and the rotation is a unit quaternion q.

The camera model ON−1 in the previous frame is con-

structed as shown in the following equations:

OON−1 = sN−1 (11)

OXN−1 = qN−1

1

0

0

 q′N−1 (12)

OY N−1 = qN−1

0

1

0

 q′N−1 (13)

OZN−1 = qN−1

0

0

1

 q′N−1 (14)

6 Rotation Calculation

At this point we have constructed the scene models

GN−1 and GN for the previous and latest frames re-

spectively. Translational motion of the camera only af-

fects the origin GON whereas rotation only affects the

orthonormal vectorsGXN ,GY N andGZN . In this sec-

tion, methods for calculating the rotation axis and ro-

tation angle are presented.

6.1 Rotation Axis

According to Euler’s rotation theorem, any number of

rigid body rotations about a fixed point are equivalent
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Fig. 7 Scene model constructed from the centers of 3 scene sections a, b and c. The origin GO is the point a. The x axis
GX is the unit vector in the direction ab. The z axis GZ is the unit vector in the direction of the cross product of ab and ac.
The y axis GY is the cross product of the x and z axes.

Fig. 8 Scene models in the previous and latest frames. As the camera moves, it views the scene from a different pose therefore
the scene appears to move relative to the camera. The scene model follows this relative motion.

to a single rotation about an axis through the point.

Rotation of the scene relative to the camera’s viewpoint

is equivalent to the rotation of the scene model. Since

we are dealing with a rigid body rotation, we expect

that there is an axis of rotation and an angle.

The 3 unit vectors GXN−1, GY N−1 and GZN−1

in the model touch the surface of an abstract sphere

with radius 1 unit. During rotation, the heads of these

vectors will move on the surface of the unit sphere along

circular arcs and end up on the sphere surface locations

touched byGXN ,GY N andGZN . The three orthonor-

mal vectors in the previous frame model are therefore

connected to those in the latest frame model by circular

arcs. These 3 arcs become 3 full circles if the rotation

angle is 360 degrees.

In addition to the 3 circular arcs, each vector pair

is also connected by a difference vector calculated by

applying vector subtraction to the paired unit vectors.

We call these vector differences dX ,dY and dZ where:

dX = GXN −GXN−1 (15)

dY = GY N −GY N−1 (16)

dZ = GY N −GY N−1 (17)

dX , dY and dZ are illustrated on a scene model in

Figure 9.

Due to the nature of rigid body rotations, the 3

arcs formed have to be parallel because every point in

the rigid body moves in a perfect circle around a single

axis resulting in circles that look like the parallels of the

earth. The 3 vector differences are not parallel but they

lie on 3 parallel planes. The 3 parallel planes intersect

the abstract sphere at 3 circles, each containing one of

the 3 circular arcs.

The axis of rotation will be a line running through

the centers of the 3 circles. The direction of this line

is a vector that fully describes the rotation axis. Since

the circles and planes are all parallel, a normal to these

planes is also the axis of rotation. The 3 difference vec-

tors also lie on these planes, therefore the rotation axis
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Fig. 9 Rotation of the scene model showing the 3 differ-
ence vectors between scene models of the previous and latest
frames. Note that translational motion does not in any way
affect dX , dY and dZ .

is the cross product of any two of these difference vec-

tors.

Since we have three difference vectors, we have 3

cross products. Ultimately we have to choose which

cross product to take as the rotation axis. The an-

swer depends on the rotation itself. Consider a situation

where the axis of rotation is parallel or close to parallel

with one of the three orthonormal vectors GX ,GY and

GZ . The vector it is parallel to will experience little or
no motion during rotation and the resulting difference

vector will be close to the zero vector in magnitude. Us-

ing this small difference vector amplifies the error scale

since it will result in a very small vector with noise val-

ues similar to its magnitude. On the other hand, the

other 2 orthonormal vectors will be far from parallel

with the axis of rotation, since the rotation axis is al-

most parallel to a vector that is orthogonal to both of

them. The remaining two vectors will experience large

movement for the rotation and the cross product of

their difference vectors can safely be used as the axis

of rotation. The problem is solved by simply taking the

largest of the 3 cross products shown below as the ro-

tation axis.

RotationAxis1 = dX × dY (18)

RotationAxis2 = dX × dZ (19)

RotationAxis3 = dY × dZ (20)

The rotation axis calculated so far has an ambigu-

ous direction since cross products are anticommutative.

To produce a consistent direction and angle, we find the

components of GXN−1, GY N−1, GZN−1 and GXN ,

GY N ,GZN that are perpendicular to the rotation axis.

These vertical components are the radiuses of the circles

mentioned above and are labeled rXN−1,rY N−1,rZN−1

and rXN ,rY N ,rZN . Figure 10 highlights the compo-

nent of GY N perpendicular to the rotation axis.

The cross products rXN−1× rXN , rY N−1× rY N

and rZN−1 × rZN all yield the rotation axis in a con-

sistent direction since we take the cross product from

N − 1 to N .

RotationAxis1 = rXN−1 × rXN (21)

RotationAxis2 = rY N−1 × rY N (22)

RotationAxis3 = rZN−1 × rZN (23)

The largest of the three cross products is taken as

the axis of rotation and normalised to get the unit axis

of rotation u.

6.2 Rotation Angle

After obtaining the rotation axis in a consistent direc-

tion, the next step is to calculate the rotation angle.

To work efficiently with quaternions, we calculate the

values of cos 1
2θ and sin 1

2θ where θ is the rotation angle.

In Figure 11 rN and rN−1 are the largest of the 3

radius pairs illustrated previously. There may be smaller

pairs or even a pair with zero vectors. The largest pair

is chosen to calculate the sine and cosine of half the

rotation angle.

From Figure 11 the value of sin θ can be calculated

from the cross product of rN and rN−1.

sin θ =
rN−1 × rN
|rN−1| |rN |

(24)

The adjacent is the projection of rN onto the vector

sum of rN−1 and rN .

adjacent = rN ·
rN−1 + rN
|rN−1 + rN |

(25)

The hypotenuse is the length of rN−1 or rN .

hypotenuse = |rN | (26)

The cosine of the half angle can then be calculated

using simple trigonometry:
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Fig. 10 A scene model rotation highlighting the component of GY N perpendicular to the rotation axis. GXN and GZN

also have components perpendicular to the rotation axis. The three components are rXN ,rY N and rZN . The largest of the
3 cross products involving these components yields the rotation axis in a consistent direction.

Fig. 11 Calculating the sine and cosine of the half angle of rotation. In this illustration, the rotation axis points out of
the page therefore the circular arcs and the planes are parallel to the page. The sine and consine of 1

2
θ are calculated using

trigonometry.
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cos
1

2
θ =

adjacent

hypotenuse
(27)

cos
1

2
θ =

rN · (rN−1 + rN )

rN−1 + rN
(28)

And from the double angle formulas we have:

sin θ = 2 cos
1

2
θ sin

1

2
θ (29)

Therefore:

sin
1

2
θ =

sin θ

2 cos 1
2θ

(30)

Now that we have the sine and cosine of the half

rotation angle, and the axis of rotation u calculated

previously, we apply these values to the unit quaternion

q used to represent rotation as follows:

q =


qw
qx
qy
qz

 (31)

u =

uxuy
uz

 (32)

Where:

qw = cos
1

2
θ (33)

qx = ux sin
1

2
θ (34)

qy = uy sin
1

2
θ (35)

qz = uz sin
1

2
θ (36)

7 Translation Calculation

At this point we have obtained a rotation estimate. The

translation will be estimated using simple vector oper-

ations. The illustration in Figure 12 is in 2D for ease

of visualisation but the underlying concept also works

3D.

In Figure 12, ON−1 and ON are the camera mod-

els at the previous and latest frames respectively. The

camera has translated and rotated in the world frame

and now observes the scene model from a different lo-

cation and pose. The scene model is fixed in the world

reference but appears to move relative to the camera.

From the previous iteration, we know the global

position and orientation at ON−1. ON is the camera

model in the latest frame. We have already calculated

its global rotation and we now seek its global trans-

lation. The vector ∆O is the displacement vector be-

tween the models ON−1 and ON . The global trans-

lation can be found by computing the vector sum of

the coordinates at ON−1 and ∆O. From Figure 12 the

value of ∆O is also the vector difference between τN
and τN−1 and can be calculated using the following

equation:

∆O = τN−1 − τN (37)

where:

τN−1 =

τN−1[X]

τN−1[Y ]

τN−1[Z]

 (38)

τN =

τN [X]

τN [Y ]

τN [Z]

 (39)

The z components of τN and τN−1 can be thought

of as pointing into the page.

The magnitude of the vectors τN [X] , τN [Y ] and

τN [Z] are values
∣∣GO[X]

∣∣, ∣∣GO[Y ]

∣∣ and
∣∣GO[Z]

∣∣ which

are the components of the scene model’s origin GO as

observed from the camera at frame MN . The direc-

tions of τN [X], τN [Y ] and τN [Z] are the 3 orthonormal

vectors OXN , OY N and OZN of the scene model at

MN . The vectors τN−1[X], τN−1[Y ] and τN−1[Z] are

therefore calculated for frame MN−1 by scaling the ob-

served scene model orthonormal vectors
∣∣GON−1[X]

∣∣,∣∣GON−1[Y ]

∣∣ and
∣∣GON−1[Z]

∣∣.
τN−1[X] = OXN−1 ·

∣∣GON−1[X]

∣∣ (40)

τN−1[Y ] = OY N−1 ·
∣∣GON−1[Y ]

∣∣ (41)

τN−1[Z] = OZN−1 ·
∣∣GON−1[Z]

∣∣ (42)

The vectors OXN−1, OY N−1 and OZN−1 are al-

ready known from the previous odometry estimate. To

calculate τN [X], τN [Y ] and τN [Z] for MN , the vectors

OXN , OY N and OZN are first obtained by rotating

OXN−1, OY N−1 and OZN−1 by the rotation value

already computed.

OXN = qN−1 ×OXN−1 × q′N−1 (43)

OY N = qN−1 ×OZN−1 × q′N−1 (44)

OZN = qN−1 ×OZN−1 × q′N−1 (45)
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Fig. 12 Camera position change between 2 frames. The camera measures different distances to the scene model in the
directions of its principle axes. The principle axes are also the 3 vectors in the orthonormal set. The vector ∆O is the amount
of camera translation between frames N − 1 and N . This illustration is in 2D but the concept can be extended to 3D. Here,
the z axes of the camera models are pointing into the page.

Similarly, we scale the orthonormal vectors for the

MN scene model.

τX[N ] = OXN ·
∣∣GON [X]

∣∣ (46)

τY [N ] = OXN ·
∣∣GON [Y ]

∣∣ (47)

τZ[N ] = OXN ·
∣∣GON [Z]

∣∣ (48)

Where q is the unit quaternion representing the es-

timated camera rotation between MN−1 and MN and

q′ is its quaternion conjugate.

After the values of τ have been calculated for MN−1

and MN , we have the vectors τN and τN−1, whose

difference is the displacement vector ∆0. The position

estimate in MN is the vector sum of ∆0 and the origin

of ON−1.

sN = OON−1 +∆0 (49)

For the RGB-D frame sequence MO,M1,M2...MN

we obtain odometry estimates εO, ε1, ε2...εN each hold-

ing a position vector s and unit quaternion q. We call

these the raw odometry estimates and perform further

processing on them to produce the final estimated tra-

jectory. It is intended that this post processing step re-

duces randomly distributed noise over time. The noise

post filter is described in the next section.

Fig. 13 Estimate refinement using ∆ = 5. Here, the average
of estimates ε5 - ε9 is used to update estimate ε7. This moving
average technique is used to update the trajectory after a
sufficient number of raw estimates have been obtained.

8 Noise Post Filter

The steps laid out in the previous section result in a se-

quence of raw odometry estimates εO, ε1, ε2...εN . Each

estimate contains the unit quaternion q representing

estimated rotation, the vector s for estimated transla-

tion, a timestamp and the scene sections [a, b, c]N−1

and [a, b, c]N that were used to create the scene model.

The raw odometry estimates will contain randomly

distributed noise over time. For better accuracy, we

compute an average estimate over a fixed number of

estimates ∆. The computed average is used as the esti-

mate at the center of the indices used for the average.

Here a buffer of capacity ∆ will be used to hold the

raw estimates. The buffer moves over the estimates i.e

in each iteration, every estimate in the buffer is moved

to a lower index. The last index becomes empty and is

assigned the latest estimate. Note that ∆ has to be an

odd number to have a center index. Figure 13 illustrates

the averaging method.

An odometry estimate εN is refined as follows:
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εN =
1

∆

∆+∑
i=∆−

εi (50)

∆+ = N +
∆− 1

2
(51)

∆− = N − ∆− 1

2
(52)

The average values have to be computed for q (the

unit quaternion representing rotation) and for s (the

displacement vector).

This refinement can be thought of as a low pass fil-

ter, where all rapid fluctuations in the trajectory are

suppressed to some extent. Increasing the value of ∆

makes the resulting trajectory more rigid to rapid changes.

Two disadvantages become apparent when using ex-

tremely high values of∆ . The first is that rapid changes

that are legitimate are also suppressed. This becomes

even more apparent during tight bends in the ground

truth trajectory. The refined trajectory will spend more

time during the bend, and probably have a larger turn-

ing radius.

The second disadvantage is that it will come with

a waiting period when the estimates buffer is not yet

full. For example with a ∆ value of 23, ε1 − ε10 which

is a total of 10 estimates will have to remain as noisy

estimates or be discarded. In the case where they are

discarded, the system will experience a startup time

interval where raw estimates are filled into the buffer

before real-time refined odometry can begin. Also, the

accumulated noise between ε0 and ε10 will probably

amount to a lot of drift since the refinement process

started late.

9 Results

In this section, results are presented for the algorithm

test runs done on the fr1/xyz sequence of the TUM-

RGB-D Benchmark. The sequence contains mostly trans-

latory motion along the principle axes of the Kinect

while the orientation was kept mostly fixed (TUM, 2014).

It is well suited for debugging purposes since it is very

simple (TUM, 2014).

TUM describes 2 error metrics: the absolute trajec-

tory error (ATE) and the relative pose error (RPE).

Relative pose error measures the local accuracy of the

trajectory over a fixed time interval and corresponds to

the drift of the trajectory whereas the absolute trajec-

tory error measures the global consistency of the esti-

mated trajectory. (Sturm et al, 2012)

For these experiments we use a sliding average width

∆ = 7, which proved to be a good general value in some

preliminary tests. 4 main configuration sets are used in

the experiments. Under each configuration, the number

of features per section FS is varied and we observed the

estimation rate in in frames per second (fps), the abso-

lute trajectory error (ATE) in meters and the relative

pose error (RPE) for the translation in meters and for

the rotation in degrees.

9.1 Perfomance

The results from the test runs show a major tradeoff

between estimation rate and accuracy. The algorithm

runs much faster with a smaller number of visual fea-

tures per section, but produces a poorer trajectory. The

extreme scenarios are when we use 1 feature per section.

The results show that such a setup defines the peak val-

ues for estimation rate.

When more features per section are used, the al-

gorithm runs slower but produces a better trajectory.

There are also limits to the number of features per sec-

tion that can be used beyond which odometry estima-

tion fails due to lack of a sufficient number of features.

The total number of sections used also affects the

estimation rate. A larger number of sections generally

produces faster estimates since smaller image patches

are matched. When using a high number of sections, the

number of features per section becomes more limited to

smaller numbers, since more features may jump across

sections when the camera moves.

9.2 Error Accumulation

The experimental results prove the validity of the algo-

rithm since the estimated trajectory closely follows the

ground truth trajectory and only drifts slightly over

time. Drift is present in any visual odometry algorithm

and it is necessary in a practical implementation to up-

date the motion estimate over long periods of time. This

can be done using an inertial measurement unit (IMU)

equipped on a mobile robot.

10 Conslusions

This paper presented an approach to visual odometry

using a compact model containing a position vector and

an orthonormal set of 3 direction vectors. We labeled

these the x, y and z axes of the model. Such a model was

derived by selecting 3 sections in the scene in the previ-

ous and latest frames, treating them as points and as-

signing them a depth value from neighbouring pixels in

the depth map. The model encodes information about
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Table 1 Results under configuration 1. A total of 4 sections
was used, each section 320 x 240 pixels with ∆ = 7.

FS Rate (fps) ATE (m) s RPE (m) θ RPE(deg)

15 0.90 0.097 0.108 3.012
13 0.92 0.076 0.083 3.349
11 0.95 0.098 0.105 3.205
9 1.00 0.036 0.063 2.112
7 1.03 0.064 0.074 2.550
5 0.97 0.044 0.088 4.653
3 1.20 0.216 0.123 6.832
1 1.16 0.144 0.152 3.761

Table 2 Results under configuration 2. A total of 8 sections
was used, each section 128 x 240 pixels with ∆ = 7.

FS Rate (fps) ATE (m) s RPE (m) θ RPE(deg)

15 0.80 0.161 0.271 3.894
13 0.81 0.255 0.395 5.455
11 0.97 0.142 0.224 3.717
9 1.30 0.183 0.262 6.060
7 1.50 0.150 0.204 5.154
5 1.70 0.100 0.136 5.242
3 1.83 0.197 0.136 7.004
1 2.45 0.272 0.151 6.770

Table 3 Results under configuration 3. A total of 15 sections
was used, each section 128 x 60 pixels with ∆ = 7.

FS Rate (fps) ATE (m) s RPE (m) θ RPE(deg)

15 0.87 0.172 0.321 4.037
13 0.99 0.105 0.187 4.548
11 1.01 0.120 0.225 5.647
9 1.06 0.399 0.376 5.694
7 1.26 0.279 0.328 5.721
5 1.59 0.226 0.234 6.398
3 1.96 0.187 0.217 6.269
1 2.60 0.238 0.149 5.728

Table 4 Results under configuration 4. A total of 25 sections
was used, each section 128 x 96 pixels with ∆ = 7.

FS Rate (fps) ATE (m) s RPE (m) θ RPE(deg)

7 1.25 0.390 0.502 5.560
5 1.51 0.281 0.367 8.724
3 2.02 0.459 0.219 9.266
1 3.38 0.206 0.157 8.913

the scene’s orientation and position. The reason for se-

lecting a group of points rather than individual points

is sensor noise. The Kinect and similar sensors provide

useful depth data at high rates but this data usually

contains a lot of noise. Simply sampling the depth of

a single pixel and using its value implicitly will lead to

poor results since the noise fluctuations usually span

more than about a 5 pixel radius.

The rigid body translation was represented as a vec-

tor in 3D space and the rotation was represented as

a unit quaternion. Unit quaternions are ideal for this

approach since their values can be computed directly

from vector operations. Additionally, they only require

4 variables to represent the rotation (which has 3 de-

grees of freedom) compared to using a rotation matrix

which needs 9 variables.

Raw odometry estimates were produced by perform-

ing vector operations on the camera and scene models

for the previous and latest frames.

10.1 Limitations

Visual Features. The algorithm relies heavily on the

presence of numerous visual features in the colour im-

ages. This is typically the case in the images of real

world scenes. However there do exist scenes that have

little or no visual features. Imagine a room with all walls

painted white. This blank room would contain little or

no visual features for the algorithm to perform match-

ing on. Since the scene model relies on detected visual

features, a model of the scene cannot be formed and

the estimation would fail. Another scenario is when the

camera is facing a blank wall at very close distance.

This would register as a blank image matrix with no

features even if the rest of the room contains many vi-

sual features, and the estimation would fail.

Maximum Speed. The maximum estimation rate

produced was about 3 frames per second. At this esti-

mation rate, the robotic platform will be expected to

move low speeds less than 1 meter per second. Increas-

ing the platform’s speed also increases motion blur in

the images. The amount of motion blur depends on the

camera’s internal design, especially the shutter speed.

A large amount of motion blur makes it more difficult

to detect visual features in the colour images and there-

fore reduces the maximum features that can be used per

scene section.

Moving Objects in the Scene. One scenario that

is not covered by this approach is the presence of mov-

ing objects in the scene. The scene was modeled as a

single rigid body which is fixed in the world coordi-

nate reference. The model created does not account for

moving objects within the camera’s field of view. This

means that a practical implementation can only work in

undisturbed environments where the robot is the only

mobile entity.

10.2 Future Work

The algorithm can be possibly improved in several ways:

Feature Detector. This method has been imple-

mented in the C++ programming language using the
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OpenCV library (OpenCV, 2014). A SURF feature de-

tector (Bay et al, 2006) was used in the feature de-

tection step thanks to OpenCVs built in SurfFeature-

Detector. Possible perfomance improvements may be

achieved by experimenting with other feature detectors

such as SIFT (Lowe, 2004), CENSURE (Agrawal et al,

2008), Harris (Harris and Stephens, 1988), Shi-Tomasi

(Shi and Tomasi, 1994), and FAST (Rosten and Drum-

mond, 2006).

Loop Closure. The drift problem exists since mo-

tion is estimated for many increments and errors are

accumulated over time. There are some good attempts

to minimise drift from visual odometry alone such as

loop closure. If a robot moves around in some environ-

ment and ends up in its initial position and orientation,

it may recognise the initial position and directly apply

the odometry estimates from the initial position. This

is known as loop closure and may be used to reduce

drift substantially.

Loop closure was not applied in this algorithm since

the problem of knowing if the robot has reached its

initial destinations falls out of the scope of this work.

Future work that extends or is related to this algorithm

could be equipped with a loop closure mechanism to

further improve the estimates where a loop is involved.
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